آخرین خبرها
خانه / آزمون همبستگی / معیار ضریب همبستگی

معیار ضریب همبستگی

همانطور که می دانید شدت وابستگي دو متغير به يكديگر را با همبستگي تعريف مي كنيم. ممكن است علاوه بر شدت همبستگي جهت همبستگي نيز مورد نياز ما باشد. اگر تمایل دارید بدانید روش صحیح انتخاب ضریب همبستگی چیست ادامه مطلب را بخوانید.
ضرايب همبستگي بين ۱- تا ۱ تغيير مي كند و مي تواند مثبت يا منفي باشد مانند ميزان رضایت شغلی یک کارمند و میزان حقوق و مزایای دریافتی وی. ضريب همبستگي يك رابطه متقارن ميباشد، هر چه ضريب همبستگي به يك نزديكتر باشد ميزان وابستگي دو متغير بيشتر است، اما دقت داشته باشید كه:
۱- اين وابستگي به معناي رابطه علت و معلولي نيست و ضريب همبستگي نشان نمی دهد که كدام متغیر علت و كدام متغیر معلول است به ميان نمي آورد.
۲- براي اطمینان از صحت آنچه ضریب همبستگی بیان می دارد مي توان ابتدا وجود رابطه غيرخطي بين دو متغير همبسته را در حالي كه ضريب همبستگي به غلط آن را نشان نميدهد، بررسي كرد.
۳- ضريب همبستگي را ميتوان براي سنجش ميزان خطاي موجود در دادهها نيز استفاده كرد، از جمله زير فاصله ها و يا برشهاي مصنوعي دامنه داده ها
۴- محاسبه ضرايب همبستگي تا حدود زيادي متاثر از مقياس اندازه گيري متغير ها است، بعنوان مثال براي متغيرهاي اسمي جهت رابطه اصلا معني ندارد، بين جنس و معدل تنها ميتوان گفت كه شدت وابستگي چه مقدار است اما افزايش يا كاهش جنس معني ندارد.
۵- آزمون ضریب همبستگی به شدت تایع حجم نمونه است. تا جائی که امکان دارد حجم نمونه را افزایش دهید

با توجه به نوع متغير ها ضريب همبستگي ميتواند يكي از حالت هاي زير را داشته باشد.

۱- دو متغير اسمي
۲- دو متغير رتبه اي
۳- دو متغير فاصله اي-نسبي
۴- متغير اسمي و متغير رتبه اي
۵- متغير اسمي و متغير فاصله اي – نسبي
۶- متغير رتبه اي و متغير فاصله اي – نسبي

براي هر كدام از حالت هاي بالا ضرايب همبستگي متفاوتي وجود دارند

الف) دو متغير اسمي هستند و يا يكي اسمي و ديگري رتبه اي است

داده های اسمی یا nominal که مربوط به متغير يا خواص کيفی مانند جنس يا گروه خونی است و بيانگر عضويت در يک گروه خاص می باشد.
داده های رتبه ای یا Ordinal : مانند کیفیت درسی یک دانش آموز (ضعیف، متوسط و قوی) و یا رتبه بندی هتل ها ( یک ستاره، دو ستاره و …

در این حالت می توانید از یکی از ضریب های همبستگی زیر استفاده کنید:

۱) ضريب همبستگي كرامر و فی: معمولا بین دو متغیر اسمی مانند اینکه بخواهیم بدانیم که آیا بين جنس و گرايشات سياسي رابطه وجود دارد يا خير
۲) ضريب توافقي C: معمولا بین دو متغير اسمي و يا يكي اسمي و يكي رتبه اي
۳) ضريب همبستگي لاندا: معمولا بین دو متغير اسمي و يا يكي اسمي و يكي رتبه اي مانند اینکه بخواهیم بدانیم بین مسئولیت پذیری کارکنان و منطقه خدمتی آنها رابطه وجود دارد یا خیر؟
۴) ضريب همبستگي تاو گودمن و كروسكال: براي ارزيابي شدت رابطه بين متغيرهايي كه هر دو اسمي يا يكي اسمي و ديگري رتبه اي باشد بكار ميرود

ب) هر دو متغير داراي مقياس رتبه اي باشند

فرض کنید شما در حال تحقیق این فرضيه هستید که بين تحصيلات كاركنان و رضایت شغلی آنها رابطه مثبت و معني داري وجود دارد یا خیر؟ اين فرضيه دو متغير دارد، تحصيلات كاركنان با طبقه بندی های ديپلم و كمتر، فوق ديپلم، ليسانس و بالاتر و رضایت شغلی با طبقه بندی های كم، متوسط و زياد).
بر خلاف متغير هاي اسمي كه جهت رابطه در آنها مفهومی نداشت در اين جا بنا به ماهيت متغیر رتبه ای جهت رابطه مفهوم دارد. لذا قبل از هرچيز بايستي بررسي کنید كه رابطه در اينحالت به چه معني می باشد.
در این حالت می توانید از یکی از ضریب های همبستگی زیر استفاده کنید:

۱- ضريب همبستگي گاما: حاصل تعامل زوج های هماهنگ و معکوس و نادیده گرفتن زوج های گره خورده با توضیحات مثال یک
۲- ضريب همبستگي تاو كندال b: حاصل تعامل زوج های هماهنگ و معکوس و زوج های گره خورده با توضیحات مثال یک
۳- ضريب تاو كندال C : حاصل تعامل تعداد زوج های هماهنگ و معکوس با توضیحات مثال یک
۴- ضريب d سامرز: شکل خاصی از ضریب همبستگی گاما که یکی از متغیر ها به عنوان متغیر وابسته در نظر گرفته می شود

مثال یک: فرض كنيد نمره ۳ دانش آموز را در دو درس مختلف داريم، پس هر دانش آموز دو نمره دارد. حال اگر نمره
يك دانش آموز با دانش آموز ديگر مقايسه شود، ميتوان بيان داشت كه اين دو دانش آموز یعنی این دو زوج نسبت به هم يك زوج معكوس را تشكيل ميدهند يا يك زوج هماهنگ. اگر با افزايش نمره یکی، نمره ديگری نیز افزايش يابد به آن دو زوج هماهنگ می گوئیم و اگر با افزايش يكي ديگري كاهش يابد زوج معكوس و چنانچه با افزايش يا كاهش يكی ديگری تغييري نكند به آن دو زوج گره خورده می گوئیم. ضریب همبستگی گاما برای این حالت کاربرد خوبی دارد

ج) هر دو متغير داراي مقياس فاصلی ای نسبی باشند

داده های فاصله ای: به عنوان مثال داده هایی که متغیر ضریب هوشی را در بین چند نفر توصیف می کنند عبارتند از: ۸۰، ۱۱۰، ۷۵، ۹۷  و ۱۱۷، چون این داده ها عدد هستند پس داده های ما کمی هستند اما می دانیم که  IQ نمی تواند صفر باشد و صفر در اینجا فقط مبنایی است تا سایر مقادیر  IQ در فاصله ای منظم از صفر و یکدیگر قرار گیرند پس این داده ها فاصله ای اند.
داده های نسبتی:  داده های نسبتی داده هایی هستند که با عدد نوشته می شوند اما صفر آنها واقعی است. اکثریت داده های کمی این گونه اند و حقیقتاً دارای صفر هستند. به عنوان مثال داده هایی که متغیر طول پاره خط بر حسب سانتی متر را توصیف می کنند عبارتند از: ۲۰، ۱۵، ۳۵، ۸ و ۲۳، چون این داده ها عدد هستند پس داده های ما کمی اند و چون صفر در اینجا واقعاً وجود دارد این داده نسبتی تلقی می شوند.

در این حالت هر دو متغیر کمیت پذیرند.

اول مشخص کنید که متغیر شما پارامتریک است یا ناپارامتریک

اگر پارامتریک بود یعنی متغیر دارای توزیع نرمال بود و مقادیر پرت در مشاهدات وجود نداشت ضریب همبستگی پیرسون
توجه: اگر یکی از متغیر ها دارای توزع پیوسته نرمال بود و متغیر دیگر دو حالتی بود مثل (زن/مرد یا قبول/رد) می توانید از ضریب همبستگی پیرسون (همبستگی دو رشته ای نقطه ای) استفاده کنید. مثل رابطه جنسیت با تعداد حوادث
اگر ناپارامتریک بودیعنی متغیر دارای توزیع غیر نرمال ضریب همبستگی اسپرمن

د) متغيرهايي با مقياس اسمي- رتبه اي و متغيرهاي با مقياس فاصله اي-نسبي

هنگامي كه يك متغير داراي مقياس اسمي و رتبه ای باشد مثل جنس، نژاد، ميزان رضايت و … و متغير ديگر مقياس فاصلهاي يا نسبي داشته باشد مانند درآمد، معدل، اندازه قد و … آنگاه بايستي شاخصي انتخاب شود كه از روي يك متغير بتوان متغير ديگر را پيش بيني كرد. از جمله اين شاخص ها شاخص نسبت همبستگی می باشد که آن را ضریب همبستگی مجذور اتا می نامیم.

۱) ضریب همبستگی مجذور اتا
فرض کنید می خواهیم بدانیم که آيا بين جنس و معدل دانشجويان رابطه وجود دارد. در اينجا جنس يك متغير كيفي يا اسمي است و معدل يك مقياس فاصله اي يا نسبي

۲) ضریب همبستگی چند رشته ای
فرض کنید مي خواهيم همبستگي بين يك متغير فاصله اي را با متغير دو حالتي يا ترتيبي كه فرض شده است كه متغير اساسا پيوسته اي را منعكس ميكند بررسي كنيم. اين ضريب همبستگي را ميتوان تا حدود زيادي مانند ضريب همبستگي پيرسون تعبير کرد.

ه) سایر

۱- ضریب همبستگی کاپای کوهن

فرض كنيد می خواهیم ميزان توافق بين مديران و معاونان را در خصوص ميزان اهميت مشتري در سازمانی ارزيابي كنیم. هر فرد اعم از مدير يا معاون ميتواند نظر خود را بصورت زياد و كم بيان كند. در اين حالت كه هر دو متغير اسمي دوتايي ميباشند ميتوان از ضريب همبستگي كاپاي كوهن كه بطور معادل در بعضي مواقع ضريب همبستگي كاپا نيز ناميده ميشود، استفاده ميشود.

۲- ضریب همبستگی چند حالتی

ضريب همبستگي چند حالتي زماني مورد استفاده قرار ميگيرد كه هر دو متغير دو حالتي يا هر دو متغير ترتيبي باشند، البته توجه كنيد كه مانند ضريب همبستگي چند رشته اي در هر دو متغير فرض شده است كه اين متغير ها اساسا تغييرات متغير پيوسته اي را منعكس ميكنند، علي الخصوص زماني كه از مقياس ليكرت استفاده ميشود بايستي از اين ضريب همبستگي استفاده كرد.

منابع:
نجیبی، سید مرتضی، انواع ضریب همبستگی و محاسبه آنها، ۱۳۸۸، http://daneshamari.blogfa.ir
میرزاده، محمد رضا، ضریب همبستگی، http://m-mirzadeh.blogfa.com

http://manuchehri.blogfa.com/

درباره‌ kashani

جوابی بنویسید

ایمیل شما نشر نخواهد شدخانه های ضروری نشانه گذاری شده است. *

*